Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
mBio ; 13(4): e0097122, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950002

ABSTRACT

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Subject(s)
COVID-19 , NF-kappa B , Cytokines/metabolism , Humans , NF-kappa B/metabolism , Open Reading Frames , SARS-CoV-2/genetics , Ubiquitination
2.
Commun Biol ; 5(1): 694, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947509

ABSTRACT

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that causes various diseases in humans, ranging from common mucocutaneous lesions to severe life-threatening encephalitis. However, our understanding of the interaction between HSV-1 and human host factors remains incomplete. Here, to identify the host factors for HSV-1 infection, we performed a human genome-wide CRISPR screen using near-haploid HAP1 cells, in which gene knockout (KO) could be efficiently achieved. Along with several already known host factors, we identified 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) as a host factor for HSV-1 infection. The KO of PAPSS1 in HAP1 cells reduced heparan sulfate (HepS) expression, consequently diminishing the binding of HSV-1 and several other HepS-dependent viruses (such as HSV-2, hepatitis B virus, and a human seasonal coronavirus). Hence, our findings provide further insights into the host factor requirements for HSV-1 infection and HepS biosynthesis.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques , Heparitin Sulfate/metabolism , Herpes Simplex/genetics , Herpesvirus 1, Human/genetics , Humans
3.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687055

ABSTRACT

Inhibition of transmembrane serine protease 2 (TMPRSS2) is expected to block the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nafamostat, a potent TMPRSS2 inhibitor as well as a candidate for anti-SARS-CoV-2 drug, possesses the same acyl substructure as camostat, but is known to have a greater antiviral effect. A unique aspect of the molecular binding of nafamostat has been recently reported to be the formation of a covalent bond between its acyl substructure and Ser441 in TMPRSS2. In this study, we investigated crucial elements that cause the difference in anti-SARS-CoV-2 activity of nafamostat and camostat. In silico analysis showed that Asp435 significantly contributes to the binding of nafamostat and camostat to TMPRSS2, while Glu299 interacts strongly only with nafamostat. The estimated binding affinity for each compound with TMPRSS2 was actually consistent with the higher activity of nafamostat; however, the evaluation of the newly synthesized nafamostat derivatives revealed that the predicted binding affinity did not correlate with their anti-SARS-CoV-2 activity measured by the cytopathic effect (CPE) inhibition assay. It was further shown that the substitution of the ester bond with amide bond in nafamostat resulted in significantly weakened anti-SARS-CoV-2 activity. These results strongly indicate that the ease of covalent bond formation with Ser441 in TMPRSS2 possibly plays a major role in the anti-SARS-CoV-2 effect of nafamostat and its derivatives.


Subject(s)
Antiviral Agents/pharmacology , Benzamidines/pharmacology , Computer Simulation , Guanidines/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Benzamidines/chemistry , Cell Line , Guanidines/chemistry , Humans , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Virus Internalization/drug effects , COVID-19 Drug Treatment
4.
J Infect Chemother ; 27(9): 1350-1356, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1267752

ABSTRACT

INTRODUCTION: Several clinical studies have reported the efficacy of favipiravir in reducing viral load and shortening the duration of symptoms. However, the viability of SARS-CoV-2 in the context of favipiravir therapy and the potential for resistance development is unclear. METHODS: We sequenced SARS-CoV-2 in nasopharyngeal specimens collected from patients who participated in a randomized clinical trial of favipiravir at hospitals across Japan between March and May 2020. Paired genomes were sequenced from those who remained RT-PCR-positive 5-8 days into favipiravir therapy. Daily nasopharyngeal specimens from 69 patients who were RT-PCR-positive at randomization were examined for a cytopathic effect (CPE). RESULTS: Some strains early in the trial belonged to clade 19 B, whereas the majority belonged to clade 20 B. The median time from the disease onset to negative CPE was 9 days. CPE was strongly correlated with the time from disease onset, viral load, age, and male sex. Among 23 patients for whom paired genomes were available, all except one had identical genomes. Two mutations were observed in one patient who received favipiravir, neither in the RdRp gene. CONCLUSIONS: The SARS-CoV-2 genome distribution in this clinical trial conducted in Japan reflected the early influx of strains from China followed by replacement by strains from Europe. CPE was significantly associated with age, male sex, and viral loads but not with favipiravir therapy. There was no evidence of resistance development during favipiravir therapy.


Subject(s)
COVID-19 , SARS-CoV-2 , Amides , Antiviral Agents/therapeutic use , China , Europe , Genomics , Humans , Japan , Male , Pyrazines , Treatment Outcome
5.
mSphere ; 6(3)2021 05 19.
Article in English | MEDLINE | ID: covidwho-1236421

ABSTRACT

Information regarding the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic carriers is scarce. In order to determine the duration of infectivity and its correlation with reverse transcription-PCR (RT-PCR) results and time since initial positive PCR test in this population, we evaluated SARS-CoV-2 cell infectivity in nasopharyngeal samples longitudinally obtained from asymptomatic carriers who disembarked from a cruise ship during a COVID-19 outbreak. Of 166 nasopharyngeal samples collected from 39 asymptomatic carriers every 48 h until two consecutive negative PCR test results were obtained, SARS-CoV-2 was successfully isolated from 9 PCR-positive samples which were obtained from 7 persons (18%; 7/39). Viable viruses were isolated predominantly within 7 days after the initial positive PCR test, except for one person who shed viable virus until day 15. The median crossing point (Cp) value of RT-PCR of culture-positive samples was 24.6 (interquartile range [IQR], 20.4 to 25.8; range, 17.9 to 30.3), and Cp values were significantly associated with isolation of viable virus (odds ratio, 0.496; 95% confidence interval [CI], 0.329 to 0.747; P value, 0.001), which was consistent with existing data for symptomatic patients. Genome sequence analysis of SARS-CoV-2 samples consecutively obtained from a person who shed viable virus for 15 days identified the emergence of two novel single nucleotide variants (C8626T transition and C18452T transition) in the sample collected on day 15, with the latter corresponding to an amino acid substitution in nonstructural protein 14. The impact of these mutations on prolonged viable-virus shedding is unclear. These findings underscore the potential role of asymptomatic carriers in transmission.IMPORTANCE A growing number of studies suggest the potential role of asymptomatic SARS-CoV-2 carriers as a major driver of the COVID-19 pandemic; however, virological assessment of asymptomatic infection has largely been limited to reverse transcription-PCR (RT-PCR), which can be persistently positive without necessarily indicating the presence of viable virus (e.g., replication-competent virus). Here, we evaluated the infectivity of asymptomatic SARS-CoV-2 carriers by detecting SARS-CoV-2-induced cytopathic effects on Vero cells using longitudinally obtained nasopharyngeal samples from asymptomatic carriers. We show that asymptomatic carriers can shed viable virus until 7 days after the initial positive PCR test, with one outlier shedding until day 15. The crossing point (Cp) value of RT-PCR was the leading predictive factor for virus viability. These findings provide additional insights into the role of asymptomatic carriers as a source of transmission and highlight the importance of universal source control measures, along with isolation policy for asymptomatic carriers.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/transmission , Virus Shedding/physiology , Adolescent , Adult , Aged , Animals , COVID-19 Nucleic Acid Testing/methods , Cell Line , Child , Chlorocebus aethiops , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/genetics , Vero Cells , Whole Genome Sequencing , Young Adult
6.
Microbiol Immunol ; 65(1): 10-16, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1066571

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.


Subject(s)
COVID-19/transmission , Ozone/pharmacology , Virulence/drug effects , Humidity , SARS-CoV-2 , Water
SELECTION OF CITATIONS
SEARCH DETAIL